[image: WS08-R2_h_c.jpg]

Cross-forest Certificate Enrollment with Windows Server 2008 R2
Microsoft Corporation
Published: December 23, 2008
Contributors: Carsten Kinder, Alex Radutskiy, and Shawn Corey
Version: 0.3

[bookmark: _Toc238286988]Abstract
Windows Server 2008 R2 allows enterprises to issue digital certificates from an enterprise Certification Authority (CA) to the clients that are members of a different Active Directory (AD) forest. This process is called cross-forest certificate enrollment. This white paper will explain how the cross-forest certificate enrollment works. It will also provide deployment guidance for new and existing Active Directory Certificate Services (ADCS) deployments. The paper will cover strategies for consolidating existing certificate templates that may be already in use in the enterprise. It will present choices for ongoing management of the cross-forest certificates deployment. A PowerShell script is also provided to facilitate management tasks related to setting up and maintaining cross-forest certificate enrollment environment.

[bookmark: _Toc238286989]Copyright Information
This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
© 2008 Microsoft Corporation. All rights reserved.

Active Directory, Microsoft, Windows, Windows Server 2008 R2, Windows XP, PowerShell are trademarks of the Microsoft group of companies.
All other trademarks are property of their respective owners.

Contents
Abstract	1
Copyright Information	2
Introduction	6
Prerequisites	6
Glossary	6
New ADCS Deployment	7
Scenario	7
Configuration Requirements Overview	8
Deployment Tasks	9
Setting up a Bi-Directional Forest Trust	9
Installing Windows Server 2008 R2 CA	9
Configuring Certificate Templates in the Resource Forest	10
Configuring CA for Cross-forest Certificate Enrollment	10
Copying ADCS Objects from the Resource Forest into the Account Forest	14
Consolidating Existing ADCS Deployment	17
Scenario	17
Deployment Tasks	19
Identifying a Resource Forest	19
Installing and Configuring CA for Cross-forest Certificate Enrollment	20
Consolidating Certificate Templates	20
Decommission Account Forest CAs	27
Cross-forest Certificate Enrollment Monitoring	27
Scheduled Updates	28
Monitoring CA Events	28
Using Active Directory Tools	31
Using Active Directory APIs	31
Considerations for Using Certificate Web Enrollment Pages	31
Cross-forest CA troubleshooting	32
Build-in templates have been accidentally deleted	32
ADCS AD containers are missing	33
Unreachable CA	33
Synchronization Issues	33
Script - PKISync.ps1	34
Script - dumpadobj.ps1	40

[bookmark: _Toc238286990]Introduction
Prior to Windows Server 2008 R2, an enterprise Certification Authority (CA) was limited in issuing certificates only to the clients that belong to the same Active Directory (AD) forest. Therefore, user and client computers would only attempt to enroll certificates from a CA in its local forest, especially in autoenrollment scenarios. This functional boundary forced PKI administrators to install at least one CA per forest. Thus, organizations with multi-forest AD environments had to operate multiple CAs, which in turn increased operation costs for those organizations.
The cross-forest certificate enrollment functionality supported by the Windows Server 2008 R2 CA allows clients to enroll for a certificate from a CA that is part of a different AD forest. It can help reduce the number of CAs in a multi-forest environment. Also, it enables environments with multiple AD forests to deploy a central certification authority with low total cost of ownership. Finally, cross-forest certificate enrollment is implemented in a way that doesn’t require any upgrade to the clients’ operating systems to enable cross-forest certificate enrollment.
This document will cover two main scenarios that are applicable for cross-forest enrollment. The New ADCS Deployment section talks about how to implement cross-forest certificate enrollment in an environment that does not have an existing enterprise CAs installed. The Consolidating Existing ADCS Deployment section provides guidance on how to consolidate an existing multi-forest ADCS deployment in favor of a cross-forest certificate enrollment.
[bookmark: _Toc238286991]Prerequisites
A reader of this white paper should be familiar with deploying CA in the enterprise environment by using certificate templates. For more information on this see:
Active Directory Certificate Services – http://go.microsoft.com/fwlink/?LinkID=127816.
Implementing and Administering Certificate Templates in Windows Server 2008 – http://go.microsoft.com/fwlink/?LinkID=115027.
[bookmark: _Toc238286992]Glossary
Resource Forest – An Active Directory forest that hosts the Windows Server 2008 R2 CA that is configured to issue certificates to users and computers from other trusted forests. This forest also holds a master copy of the Active Directory objects that are used by the Active Directory Certificate Services (ADCS) clients and servers.
Account Forest – An Active Directory forest in which users and computers enroll for certificates from a Windows 2008 R2 CA located in another forest.
[bookmark: _Toc238286993]New ADCS Deployment
This section explains how a cross-forest certificate enrollment can be deployed in an Active Directory environment with multiple forests and no enterprise CAs installed.
[bookmark: _Toc238286994]Scenario

Contoso is a large enterprise that has deployed and acquired multiple Active Directory forests over the years. Currently, Contoso has not implemented ADCS because of a high total cost of ownership associated with deploying ADCS in multiple forests. The below diagram illustrates Contoso’s current Active Directory environment.
With the availability of Windows Server 2008 R2, Contoso’s IT department is now able to deploy ADCS at the much lower cost. As illustrated in the diagram below, Contoso have deployed a two-tier hierarchy that allows users and computers from all of the Contoso’s forests to enroll for certificates from an enterprise CA installed in forest A.
[bookmark: _Toc238286995]Configuration Requirements Overview
 A cross-forest certificate enrollment has these configuration requirements:
A bi-directional forest trust relationship is established between the resource forest and the account forest.
A Windows Server 2008 R2 Enterprise CA must be set up in the forest acting as resource forest.
The users and client computers in every account forest must be permitted to enroll for certificate templates issued by the CA in the resource forest.
The issuing CA must be configured to support LDAP referrals.
The issuing CA must be added to Cert Publishers group in every account forest.
AIA and CRL distribution points must be to be accessible from every account forest.
The root CA certificate that the issuing CA chains up to must be trusted by clients in every account forest.
The issuing CA certificate should be published in the NTAuth store in every account forest.
The CA object of the Windows Server 2008 R2 CA in the resource forest must be made available in the Enrollment Services container in every account forest.
Certificate templates must be copied from the resource forest to every account forest.
The client computers must be at least Windows XP or Windows Server 2003.
[bookmark: _Toc238286996]Deployment Tasks
This section describes the steps that an administrator needs to perform to enable cross-forest certificate enrollment. Once all setup steps from this section have been performed, users or client computers that are members of the account forests will be able to enroll for certificates from an enterprise CAs in the resource forest.
[bookmark: _Toc238286997]Setting up a Bi-Directional Forest Trust
Cross-forest enrollment only works between forests that are using at least the Windows Server 2003 forest mode because a bi-directional forest trust is required between the resource and account forests.
The reason for the bi-directional forest trust is that users from the account forest must be permitted on the certificate templates in the resource forest where the certification authority is located. At the same time, the issuing certification authority must be able to verify the requestor’s identity based on its Kerberos token and be able to access Active Directory in the account forest to build certificate subject name information.
For information about setting up a forest trust and associated security considerations see Administering Domain and Forest Trusts at http://go.microsoft.com/fwlink/?LinkId=131499.
If Selective Authentication is required for the trust, the following considerations exist for the cross-forest certificate enrollment:
Certificate requestors (machines or users) in the account forest need to have "Allow Authenticate" access to the CAs in the resource forest.
CAs in the resource forest need to have "Allow Authenticate" access to all DCs in requestor domain to be able to access user or computer objects of requestors.
An administrator running scripts included in this paper needs "Allow Authenticate" access to the DC in the other forest.
[bookmark: _Toc238286998]Installing Windows Server 2008 R2 CA
Any cross-forest certificate enrollment requires the existence of at least one Windows Server 2008 R2 CA in a resource forest. The CA must be installed on an Enterprise or a Datacenter SKUs of the Windows Server to support clients from a different Active Directory forest. The installation of an enterprise certification authority used for cross-forest enrollment should follow the general practices recommended by Microsoft. For more information see Active Directory Certificate Services Step-by-Step Guide at http://go.microsoft.com/fwlink/?LinkId=137417.
[bookmark: _Toc199902307][bookmark: _Toc238286999]Configuring Certificate Templates in the Resource Forest
In addition to usual steps in setting up certificate templates, users or computers from an account forest should be give Enroll and in most cases Autoenroll permissions on templates that will be used in the enterprise. It is a recommended to use universal or global groups to control permission on the certificate templates. These types of groups have are best suited for permission management in a distributed multi-forest configuration since they can be used across forest boundaries.
[bookmark: _Toc238287000]Configuring CA for Cross-forest Certificate Enrollment
In addition to normal CA configuration, the CA must be configured to allow LDAP referrals, has its certificate published to the NTAuth certificate store in every account forest, has its root certificate trusted by clients in every account forest, and have its machine account added to the Cert Publishers group in every account forest. Also, CRL and AIA distributions points must be configured to be accessible by clients in every account forest. These tasks are explained in details in the following subsections.
Enabling LDAP Referrals on the CA
In order for CA to access user and computer objects in another forest, it has to be able to chase LDAP referrals returned from CA’s domain controller (DC). The ability to do this is a new feature in Windows Server 2008 R2. However, it is turned off by default so to turn on support for LDAP referrals perform the following command on the CA at a command line with local administrator permissions:
certutil -setreg Policy\EditFlags +EDITF_ENABLELDAPREFERRALS
To undo the configuration change, perform the following command:
certutil -setreg Policy\EditFlags -EDITF_ENABLELDAPREFERRALS
To apply changes of the EditFlags configuration parameter, the CA service must be restarted. To do this from a command-line, perform the following command at the CA computer with local administrator permissions:
net stop certsvc && net start certsvc
Adding CA Machine Account to Cert Publishers Group
When an enterprise CA is installed, its machine account is automatically added to the Cert Publishers group in its Active Directory forest. This allows CA to publish issued certificates to user objects in AD. However, to allow the CA to work with clients from other forests, the CA must be added to the Cert Publishers group in every account forest.
Configuring AIA and CRL Distribution Points
There are special considerations for defining AIA and CRL distribution points in the cross-forest certificate enrollment scenario.
As clients enroll and use certificates issued by a CA from another forest, they will attempt to download objects from distribution points defined in the Extensions tab of the CA properties. The administrator must confirm that those locations are accessible by clients in every account forest.
Also, administrators should consider an increased load on servers that service those distribution points. For example, an LDAP distribution point in the resource will be accessed by clients from all forests in the enterprise and will increase load on the DCs in the resource forest.
Publishing Root Certificate into Account Forest
The availability of the root CA certificate is mandatory to establish a trust relationship between a certificate enrollee and an issuing certification authority. Therefore, the root CA certificate that the issuing CA’s certificate chains up to must be published into each account forest.
To publish a root CA certificate into the enterprise wide configuration of an Active Directory environment export the latest root CA certificate into a file by running this command:
certutil -config <CA machine name>\<CA Name> -ca.cert <file name>
For example
certutil -config Cont-CA1\ContosoCA -ca.cert ContosoCA1.cer
As a next step, perform the following command in every account forest. Run this command with Enterprise Admins permissions in that forest:
certutil -dspublish -f <RootCACertificateFile> RootCA
For example
certutil -dspublish -f ContosoCA1.cer RootCA
Note: RootCA is a fixed command-line option and must be specified as is in the above command.
Note: The new certificate will not be in the Root stores on the clients until next group policy update occurs. Active Directory replication may also affect this. Windows enrollment clients (MMC Certificate Enrollment wizard and autoenrollment) will not enroll from a CA that is not trusted so it is important for this certificate to get to the client’s Root store before enrollment can succeed.
To confirm that certificate has been added to the store, the following command can be used:
certutil -viewstore "ldap:///CN=Certification Authorities,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cACertificate?one?objectClass=certificationAuthority"
To delete a certificate from the store, the following command can be used:
certutil -viewdelstore "ldap:///CN=<CAName>,CN=Certification Authorities,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cACertificate?base?objectClass=certificationAuthority"
The command shows the list of certificates that are currently stored in the store. By selecting a certificate and then clicking OK you can remove it from the certificate store. Before executing this command replace <CAName> with CA’s sanitized common name.
Note: The ‘-dspublish’, ‘-viewstore’, and ‘-viewdelstore’ command support specifying a target DC via ‘-dc’ parameter. It is recommended to use the ‘-dc’ parameter to get consistent results.
Publishing Issuing CA Certificate to the NTAuth Certificate Store
The Public Key Services container of every Active Directory forest contains an Active Directory object called NTAuthCertificates. The NTAuthCertificates object is a certificate store (NTAuth) that contains CA certificates that are trusted to issue certificates for Windows authentication, for example during the smartcard logon. CA’s that perform key archival must have their certificates in this store as well.
Note: No other certificates than from issuing CAs should be part of the NTAuthCertificates object.
To add the certificate of an issuing CA from a file to the NTAuthCertificates store, Enterprise Admins permissions are required. To perform this task, run the following command at a command-line:
certutil -dspublish -f <Cacertificate.cer> NTAuthCA
For example:
certutil -dspublish -f ContosoCA1.cer NtauthCA
Any authenticated user can look into the NTAuthCertificates object with the following single-line command:
certutil ‑viewstore "ldap:///CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cACertificate"
For example
certutil ‑viewstore "ldap:///CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration,DC=contoso,DC=com?cACertificate"
In case, a certificate was wrongly added to the NTAuthCertificates container, it can be deleted with the following single-line command:
certutil ‑viewdelstore "ldap:///CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cAcertificate"
For example:
certutil ‑viewdelstore "ldap:///CN=NTAuthCertificates,CN=Public Key Services,CN=Services,CN=Configuration,DC=contoso,Domain Controller=com?cAcertificate"
The command shows the list of certificates that are currently stored in the store. By selecting a certificate and then clicking OK you can remove it from the certificate store.
Publishing Issuing CA Certificates into Account Forest
Although not required for the cross-forest certificate enrollment specifically, it is recommended to publish issuing CA certificates into account forest’s AIA container. This would prevent certificate validation failures that may happen before resource forest’s AIA containers are accessible to the computers verifying a certificate issued by one of resource forest CAs. The autoenrollment service will proactively download those certificates and store those certificates from the AIA container into the computer Intermediate Certification Authorities store allowing them to be used during certificate validation.
To publish an issuing CA certificate into the enterprise wide configuration of an Active Directory environment, export the latest issuing CA certificate into a file by running this command:
certutil -config <CA machine name>\<CA Name> -ca.cert <file name>
For example
certutil -config Cont-CA1\ContosoCA -ca.cert ContosoCA1.cer
As a next step, perform the following command in every account forest. Run this command with Enterprise Admins permissions in that forest:
certutil -dspublish -f <RootCACertificateFile> SubCA
For example
certutil -dspublish -f ContosoCA1.cer SubCA
Note: SubCA is a fixed command-line option and must be specified as is in the above command.
Note: The new certificate will not be in the Intermediate Certification Authorities stores on the clients until next group policy update occurs. Active Directory replication may also affect this.
To confirm that certificate has been added to the store, the following command can be used:
certutil -viewstore "ldap:///CN=AIA,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cACertificate?one?objectClass=certificationAuthority"
To delete a certificate from the store, the following command can be used:
certutil -viewdelstore "ldap:///CN=<CAName>,CN=AIA,CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>?cACertificate?base?objectClass=certificationAuthority"
The command shows the list of certificates that are currently stored in the store. By selecting a certificate and then clicking OK you can remove it from the certificate store. Before executing this command replace <CAName> with CA’s sanitized common name.
[bookmark: _Toc199902308][bookmark: _Toc238287001]Copying ADCS Objects from the Resource Forest into the Account Forest
There are three types of AD objects that are involved in certificate enrollment in the enterprise deployments. Objects under Enrollment Services container represent issuing CAs. Objects under Certificate Templates container represent certificate templates. Objects under OID container represent Oids that are used in certificate templates. These containers are located in Active Directory under the path: CN=Public Key Services,CN=Services,CN=Configuration,DC=<ForestRootNameSpace>
The script provided in section Script - PKISync.ps1 of this white paper allows copying objects types listed above. The script is a PowerShell script and must be executed under PowerShell command window. For more information on Windows PowerShell see: http://go.microsoft.com/fwlink/?LinkID=128018.
Copying objects from the resource forest into the account forest is process which must be completed during initial setup and must be repeated after any of these events have occurred:
Certificate template addition, deletion or change.
Addition or removal of a certificate template from an issuing CA.
Install or uninstall of a CA.
CA certificate renewal.
Change of the security permissions on the CA.
It is recommended that all of the objects are copied every time one of the above changes has occurred to make sure that there is no difference between resource and account forests.
To run the script that copies the ADCS objects from the resource forest into the account forest enterprise permissions in the account forest are required.
Note: Applications such as Certificate Manager Snap-in that use Windows Crypto APIs to lookup certificate template display names, certificate policy statement (CPS) URLs and names, and Application Policies names implicitly retain a cache of the Oid objects in their memory that gets refreshed every eight hours. When an Oid object is copied from one forest to another such application may not be able lookup new Oids right away due to this caching mechanism. This however doesn’t prevent certificates from being used or enrolled for. Only user interface components will be affected. To refresh the cache before it expires, the application must be restarted.
Note: Windows operating system maintains a local certificate template cache in the registry. When certificate templates are updated either via Certificate Template Snap-in or by using the PKISync.ps1 script the changes will not be seen by the domain clients immediately which can cause temporary enrollment failures or cause a stale view in the Certificate Template Snap-in. This is acceptable in most cases because general Active Directory replication delays may result in the same types of failures. However, when testing certificate template configurations clearing cache may be required. For more information on how to clear the cache see: http://support.microsoft.com/kb/281260.
Copying All ADCS Objects
To copy all ADCS objects required for cross-forest certificate enrollment run:
.\PKISync.ps1 -sourceforest <SourceForestDNS> -targetforest <TargetForestDNS> [-f]
Specify the DNS name of the resource forest as a SourceForestDNS parameter and DNS name of the account forest as a TargetForestDNS parameter. Use -f switch to overwrite existing objects.
For example, the below command updates all object from resource forest to account forest.
.\PKISync.ps1 -sourceforest res.contoso.com -targetforest acct.contoso.com -f
Note: When using the ‘-f’ switch, existing objects may overwritten unintentionally. To examine what objects will be touched without actually writing new values, run the script with the ‘-whatif’ switch first.
Before running the script, you should be aware of the following behavior:
Objects that exist only in the account forest are not deleted or modified by this script.
In the case of CA certificate renewal, new certificates may need to be published as described in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store. Since these actions constitute a trust decision and should be a conscious choice on the part of the account forest administrator, the script doesn’t attempt to complete them.
Note: Microsoft does not support modification of ADCS objects in Active Directory except through the Certificate Templates snap-in or Certification Authority snap-in. However, to enable cross-forest enrollment, the script provided with this white paper permits modification of ADCS objects in a limited manner by only copying objects that were already created through other means like Certificate Template snap-in.
Deleting Certificate Template or CA Objects
When certificate template has been deleted or CA has been uninstalled, you can update the account forest by running the script. For example to delete a template execute:
.\PKISync.ps1 -targetforest acct.contoso.com -type Template -cn MyTemplate -deleteOnly
Logging
To generate logs while running the script, use start-transciprt and stop-transcipt PowerShell cmdlets. For example:
start-transript mylog.txt
.\PKISync.ps1 -sourceforest res.contoso.com -targetforest acct.contoso.com –f
stop-transcript
[bookmark: _Toc238287002]Consolidating Existing ADCS Deployment
[bookmark: _Toc199902310]Windows environments with an existing Windows CA infrastructure may also benefit from cross-forest enrollment because the number of certification authorities could be reduced. Before Windows Server 2008 R2 became available, an enterprise certification authority was required in every Active Directory forest so that redundant CAs may have been deployed where a single CA would be able to handle the load.
[bookmark: _Toc238287003]Scenario
Contoso is a global holding company that has already implemented Active Directory Certificate Services (ADCS). Because of Contoso’s holding structure, it was a requirement to deploy multiple forests to keep sub-companies separate from each other. When Contoso deployed certificates for data encryption and authentication, they recognized that they had to install an enterprise issuing CA into each of their existing forests. To maintain a central trust anchor for the entire company, they have also deployed a standalone offline root CA. All enterprise issuing certification authorities received their CA certificate from that standalone offline root CA.
The following diagram illustrates the Active Directory environment that Contoso has implemented with Windows Server 2008.
[bookmark: _Toc198543008]With the availability of Windows Server 2008 R2, the CA management team at Contoso decided to consolidate the ADCS deployment so that only a small number of enterprise certification authorities are required to provide certificate services for all sub companies. As you can see from the picture below, Enterprise CAs from forest B and C have been consolidated into a single Enterprise CA in forest A.
The new architecture for the consolidated ADCS deployment is illustrated in the following diagram:
With the new architecture in place, users and computers that are members of forest B or C can now enroll for certificates from an Enterprise CA located in forest A.
[bookmark: _Toc238287004]Deployment Tasks
The deployment tasks to implement cross-forest enrollment in existing ADCS deployment are the same as described in section Deployment Tasks for the new ADCS deployment, but need to be extended with steps for consolidating templates that may have been already in use and decommissioning the existing CAs.
The tasks that are required to prepare cross-forest enrollment and consolidate an existing Windows CA are the following:
Identify a resource forest.
Install a Windows Server 2008 R2 CA and configure it for cross-forest certificate enrollment.
Consolidate existing certificate templates.
Decommission account forest CAs as needed.
[bookmark: _Toc238287005]Identifying a Resource Forest
When there is an existing ADCS deployment in more than one forest, it is recommended to choose one of those forests as a resource forest to minimize the effort that will be required during consolidation. A forest with highest number of CAs and templates deployed would be the best candidate.
However, it is acceptable to use a forest that has no existing PKI as a resource forest. This could be beneficial in situation where only one-way trusts are allowed between existing forests. In this case, an administrator can create a dedicated forest to host enterprise PKI and create two-way trust with other forests in the enterprise.
[bookmark: _Toc238287006]Installing and Configuring CA for Cross-forest Certificate Enrollment
In existing ADCS deployments, it is acceptable to upgrade an existing CA in the resource forest to the Windows Server 2008 R2. The configuration steps for the CA are the same as those that are described in section Configuring CA for Cross-forest Certificate Enrollment for new ADCS deployment scenario.
[bookmark: _Toc238287007]Consolidating Certificate Templates
This section lists consolidation patterns that will help administrators to understand how particular template should be consolidated between the account forest and the resource forest. However, several things are true in all cases:
Once a template from an account forest has been copied to the resource forest, all modification should be done in the resource forest and then propagated to the account forest.
If a template is a part of a superseding relationship (being superseded or supersedes another one), all templates in that relationship should exists in both forests and should be copied together.
When a template has been moved from account forest to the resource forest and has been assigned to a CA in the Resource forest, it is acceptable to continue issuing it from the account forest CAs as well. This can help to make transition smoother. However, eventually the goal is to not have any CAs in the account forest.
Although not required, it is recommended to consolidate all of the templates at one time and continue with full copy of the ADCS objects after that. This greatly simplifies the ongoing management. However, in large PKI deployments it may not be feasible.
For more information about certificate templates refer to “Implementing and Administering Certificate Templates in Windows Server 2008” - http://go.microsoft.com/fwlink/?LinkID=115027.
Continue Issuing a Template in the Resource Forest
Situation: Account forest has a template that is specific for that forest. Resource forest doesn’t currently have a similar template configured. For example, a company may have of all their web servers in their account forest historically and have setup a template called AccountWebServer that they have duplicated from the WebServer default template. The resource forest never had a similar template deployed because there were no web servers in that forest.
In this case administrator should do these steps:
Copy the template from account forest to the resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Template -cn AccountWebServer
Note: The value of the ‘cn’ parameter in the above command is the name of the template, not a display name. Both names can be examined on the certificate template property pages in the Certificate Template snap-in.
Copy all of the Oid objects from the Account Forest to the Resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Oid -f
In the resource forest, configure the template security to allow resource forest administrators to manage the template. For example, by default Enterprise Admins have full control permission on the templates created in a forest. To have the same security, give Enterprise Admins of the resource forest full control permissions on the template.
Note: The script provided in this white paper will not copy the owner field of the security descriptor so when any object is copied with the script, the owner will be set to the security context in which the script was executed. This is not a deficiency as there is no need to change the owner when the object is copied. Instead access control should be configured with a DACL which is copied by the script.
When certificate is renewed, the original certificate is used to sign the certificate request. In order for the CA in the resource forest to accept a signature on renewal certificate request, the root CA to which that certificate chains up to must be trusted by the CA. If CAs in the resource and account forests had different roots, export account forest root CA certificates and publish them in the RootCA store in the resource forest. To complete this task use the commands described in section Publishing Root Certificate into Account Forest.
The same considerations apply to a situation when performing Enroll On Behalf Of (EOBO) certificate enrollment and Enrollment Agent’s (EA) certificate was originally issued by a CA in the account forest. Also an account forest CA that has issued EA certificates needs to be added to the resource forest as documented in Publishing Issuing CA Certificate to the NTAuth Certificate Store section.
Configure CA in the resource forest to issue the template.
Copy resource CA object to the account forest. If this is the first time this CA has been copied to the account forest, complete the steps outlined in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type CA -cn MyCA -f
Note: The value of the ‘cn’ parameter in the above command is the sanitized name of the CA which in rare cases where non-English or long names are used may not be equal to the CA name. To obtain the proper value, run certutil.exe on the CA without any parameters and use the value for the “Sanitized Short Name”.
Copy the template back from resource forest to the account forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Template -cn AccountWebServer -f
Remove the template from the list of issued templates in the account forest CA.
Continue Issuing Templates in the Resource Forest When a Conflict Exists
Situation: Both account forest and resource forest have the same templates deployed and administrator wants to continue issuing both of them from the resource forest. Unfortunately both templates have the same name. For example, there is a CustomSmartCard template in the resource and the account forest. Also, the template has the option “Require the following for reenrollment: Valid existing certificate” selected. It is undesirable to move users from the account forest to enroll for certificates based on the template that is currently in the resource forest as it would mean they would not be able to use the existing certificates to renew for that template. This could mean a high number of users manually going through the process of initial enrollment again.
To solve this problem the administrator should do these steps:
Rename the template in the account forest by right-clicking on the template in the Certificate Template snap-in and selecting Change Names option. New name could be anything as long as it differs from the name of the same template in the resource forest. For example, CustomSmartCardAccount.
Note: The rename feature is only available on the Certificate Template snap-in that is included with Windows Server 2008 R2.
Note: If the key size configured on the template is less than default key size for the Windows Server 2008 R2, the rename feature will increase the key size while renaming the template. If this is not desired, open the template for edit and revert to the original key size.
Copy the renamed template to the Resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Template -cn CustomSmartCardAccount
Copy all of the Oid objects from the account forest to the resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Oid -f
When certificate is renewed, the original certificate is used to sign the certificate request. In order for the CA in the resource forest to accept a signature on renewal certificate request, the root CA to which that certificate chains up to must be trusted by the CA. If CAs in the resource and account forests had different roots, export account forest root CA certificates and publish them in the RootCA store in the resource forest. To complete this task use the commands described in section Publishing Root Certificate into Account Forest.
The same considerations apply to a situation when performing Enroll On Behalf Of (EOBO) certificate enrollment and Enrollment Agent’s (EA) certificate was originally issued by a CA in the account forest. Also an account forest CA that has issued EA certificates needs to be added to the resource forest as documented in Publishing Issuing CA Certificate to the NTAuth Certificate Store section.
 In the Resource forest, configure the template security to allow resource forest administrators to manage the template. For example, by default Enterprise Admins have full control permission on the default templates created in a forest. To have the same security, give Enterprise Admins of the resource forest full control permissions on the template.
Configure copied template to be issued by a CA in the resource forest.
Copy Resource CA object to the account forest. If this is the first time this CA has been copied to the account forest, complete the steps outlined in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type CA -cn MyCA -f
Copy the template back from resource forest to the account forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Template -cn CustomSmartCardAccount -f
Remove the template from the list of issued templates in the account forest CA.
Consolidating Template with Similar Purposes
Situation: Both account and resource forests have templates setup that may have different names, but serve the same purpose for the users in their forests. For example, there are templates for the email signing. These templates may or may not have identical settings.
There are several ways to consolidate these templates and each has advantages and disadvantages.
Continue issue certificate based on both templates – An administrator can just follow the steps described in section Continue Issuing a Template in the Resource Forest above. The advantage of this approach is that users in the account forest will continue using their existing certificates and renew them at the same rate as before. The disadvantage is that administrators still have to manage two separate templates instead of one.
Supersede template in the account forest with a template in the resource forest – An administrator should follow these steps to achieve this:
Copy a template from the account forest to the resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Template -cn ToBeSuperseded
Copy all Oid objects from the Account forest to the Resource forest.
.\PKISync.ps1 -sourceforest account.contoso.com -targetforest resource.contoso.com -type Oid -f
Supersede the account forest template with the corresponding template in the resource forest.
Configure security setting on the resource forest template to include users from the account forest.
Copy the resource forest template to the account forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Template -cn SupersedingTemplate
Copy resource CA object to the account forest. If this is the first time this CA has been copied to the account forest, complete the steps outlined in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type CA -cn MyCA -f
Copy all Oid objects from the account forest to the resource forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Oid -f
The advantage of this approach is that there is only one template that is used across the enterprise. The disadvantage is that the consolidation steps are the most complicated out of all the options and when consolidation is complete all users in the account forest will reenroll (if autoenrollment is used) for the new template simultaneously which may cause a spike of the network activity and of the number of the requests going to the CA in the resource forest.
Issue certificates based on the template in the resource forest only – An administrator can simply stop issuing certificates based on the template in the account forest. Add users from the account forest to the template in the resource forest and make it available in the account forest. The advantage of this approach is that the consolidation process is very simple and there is only one template used across the enterprise. The disadvantages is that for some time users in the account forest will have multiple valid certificates for the same purposes which may create user confusion when they have to choose one to be used in an application.
Consolidating Version 2 and Version 3 Default Templates
Situation: Both account and resource forests have the Workstation template deployed. During the consolidation the administrator would like to continue issuing certificates for the computers in the domain.
Since renaming a default template is not supported, the administrator should create new template that will supersede Workstation template and use that template in both forests. The administrator should follow these steps.
Create new template in the resource forest by duplicating a Workstation template, for example NewWorkstation.
Supersede Workstation template by NewWorkstation template.
Add a template to be issued by a CA in the resource forest.
Remove Workstation template from any CA that currently issues it in both resource and account forests.
Copy resource forest template to the account forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Template -cn NewWorkstation
Copy resource CA object to the account forest. If this is the first time this CA has been copied to the account forest, complete the steps outlined in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type CA -cn MyCA -f
Copy all Oid objects from the Account forest to the Resource forest.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Oid -f
Just as in previous section, the option of just issuing certificates based on the template in the resource forest and stopping issuance of certificates based on the template in the account forest is available.
Consolidating Version 1 Templates
If a Version 1 template is being used in both account and resource forests, the administrator should follow this procedure to consolidate:
Remove the template from the list of issued templates in the account forest CA.
Configure security setting on the resource forest template to include users from the account forest.
Copy resource CA object to the account forest. If this is the first time this CA has been copied to the account forest, complete the steps outlined in sections Publishing Root Certificate into Account Forest and Publishing Issuing CA Certificate to the NTAuth Certificate Store.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type CA -cn MyCA -f
Copy resource forest template to the account forest to update the security settings.
.\PKISync.ps1 -sourceforest resource.contoso.com -targetforest account.contoso.com -type Template -cn User -f
[bookmark: _Toc238287008]Decommission Account Forest CAs
The eventual goal for cross-forest certificate enrollment is to decrease the number of CAs deployed in the enterprise. Once all certificate templates have been consolidated and a CA in an account forest is not issuing any certificates, the CA can be decommissioned.
The steps to decommission a CA are documented in the CA Maintenance - http://go.microsoft.com/fwlink/?LinkId=138123. However, it may be easier to keep the CA deployed until its certificate expires and continue issuing CRLs at regular intervals. This will eliminate the need to revoke all issued certificates and will allow them to be used until they are expired.
[bookmark: _Toc199902312][bookmark: _Toc238287009]Cross-forest Certificate Enrollment Monitoring
As described in section Copying ADCS Objects from the Resource Forest into the Account Forest, there are a number of events that require the ADCS objects to be synchronized between a resource and an account forests. All of those events are a product of some administrative task so it is possible for the administrator to simply remember to update the account forests each time she makes a change in the resource forest. As humans are prone to error and can forget to do this, it is recommended to monitor the consistency of CA objects, certificate templates and OIDs between the resource forest and the account forest or to schedule an update at a regular interval. The duplicated ADCS objects in an account forest should always be an exact copy of the originals in the resource forest.
The following sections described different strategies to monitor cross-forest enrollment environment to make sure the ADCS objects are consistent between resource and account forests.
[bookmark: _Toc238287010]Scheduled Updates
The simplest solution to make sure that ADCS objects in Active Directory are synchronized between resource and account forests is to schedule an execution of the script provided in this white paper to update all object types on the regular basis. In most ADCS deployments changes to certificate templates or CA configuration happen infrequently. Also, changes in Active Directory are not instantaneous due to replication delays so there is no expectation of real time updates. Running the script daily would provide good enough level of consistency in most scenarios. For deployments that require faster updates the following sections provide alternatives that can allow those requirements to be met, but would require more complex management procedures or use of other tools.
[bookmark: _Toc238287011]Monitoring CA Events
Windows Server 2008 R2 has already a set of events that can be used as a signal that the ADCS objects should be updated in the account forest. The events (detailed below) can be consumed by monitoring tools like System Center Operation Manager (http://go.microsoft.com/fwlink/?LinkID=124356). When any of those events are received a monitoring solution may notify the administrator of the status or even schedule an execution of the scripts provided in this white paper to update the account forest.
When using these events the administrator should consider the following facts:
Any of the events below may be an indication that the data should copied from resource forest to the account forest.
Some of these events may be a false positive, for example the CA startup event. However, since none of those events should be occurring frequently updating ADCS objects in response to those events should not create an excessive overhead to the AD traffic.
The events 4892 and 4899 will not be logged until a request is received for the specific certificate template. This means that if request comes from a user in the account forest, the template that was used by the client may already be out of date and CA will reject the request.
The list of the events is as follows:
	Log Name
	Application

	Source
	Microsoft-Windows-CertificationAuthority

	Event Id
	26

	Task Category
	None

	Level
	Information

	Description
	Active Directory Certificate Services for %1 was started. %2

	Log Name
	Security

	Source
	Microsoft-Windows-Security-Auditing

	Event Id
	4882

	Task Category
	Certification Services

	Level
	Information

	Description
	The security permissions for Certificate Services changed.
%1

	Log Name
	Security

	Source
	Microsoft-Windows-Security-Auditing

	Event Id
	4892

	Task Category
	Certification Services

	Level
	Information

	Description
	Certificate Services loaded a template.
%1

	Log Name
	Security

	Source
	Microsoft-Windows-Security-Auditing

	Event Id
	4899

	Task Category
	Certification Services

	Level
	Information

	Description
	A Certificate Services template was updated.
%1

	Log Name
	Security

	Source
	Microsoft-Windows-Security-Auditing

	Event Id
	4892

	Task Category
	Certification Services

	Level
	Information

	Description
	A property of Certificate Services changed.
%1

The CA startup event 26 is logged by default. However to get the rest of the events the following configuration steps must be completed by the CA administrator:
Enable Object Access / Success Auditing in the CA machine’s local security policy.
Start mmc.exe
Add snapin “Group Policy Object Editor” and select Local Computer group policy object.
Under the path Computer Configuration\Windows Settings\Security Settings\Local Policies\Audit Policy enable success auditing for Object Access.
Enable auditing on the CA
Open CA Management snapin.
Open CA properties dialog.
On the Auditing tab check Change CA configuration and Change CA security settings options.
All CAs that issue certificates to another forest should be monitored if this approach is used. If you’re experiencing problems applying auditing policy, see http://support.microsoft.com/kb/921468 for a possible workaround.
[bookmark: _Toc238287012]Using Active Directory Tools
Currently Microsoft is not providing a dedicated monitoring solution to compare the Active Directory objects specifically required for cross-forest enrollment. However, it is acceptable to use general purpose directory monitoring and replication tools to achieve data consistency between two forests. For example the Synchronization Engine of the Microsoft Identity Lifecycle Manager (http://go.microsoft.com/fwlink/?LinkId=138124). If such tool is used, the containers described in section Copying ADCS Objects from the Resource Forest into the Account Forest should be synchronized.
[bookmark: _Toc238287013]Using Active Directory APIs
Microsoft provides a rich set of APIs that allows listening for change notifications in active directory. These APIs can be used to develop custom solutions if needed. For more information see Lightweight Directory Access Protocol (http://go.microsoft.com/fwlink/?LinkId=138125) and System.DirectoryServices.Protocols Namespace (http://go.microsoft.com/fwlink/?LinkId=138126).
[bookmark: _Toc238287014]Considerations for Using Certificate Web Enrollment Pages
The following table shows the supportability matrix for the certificate enrollment across different forest with CA Web Pages:
	CA Forest
	Web Pages Forest
	Same Machine
	Delegation
	Supported

	Resource
	Resource
	Yes
	N/A
	Yes

	Resource
	Resource
	No
	Computer
	Yes

	Resource
	Resource
	No
	Constrained
	Yes

	Resource
	Account
	No
	Computer
	Yes

	Resource
	Account
	No
	Contained
	No

[bookmark: _Toc199902313][bookmark: _Toc238287015]Cross-forest CA troubleshooting
The following section provides solution to some common problems that an administrator may run into while configuring cross-forest certificate enrollment.
[bookmark: _Toc199902317][bookmark: _Toc238287016]Build-in templates have been accidentally deleted
If the build-in templates or OIDs have been accidentally deleted from Active Directory, the following command can be used to recreate the certificate templates to its initial state:
certutil.exe -InstallDefaultTemplates
Note: Resetting the certificate templates will recreate missing templates and OIDs with the default configuration and default access control lists. If the default templates had custom access control lists or properties had changed before deletion it is required to readjust these settings after rebuilding the certificate templates and OIDs. In case of autoenrollment is in use, a reset of certificate templates may have a side effect on the enrollment behavior. The autoenrollment code takes the major and minor number from the certificate template and an autoenrolled certificate into account. If an Enterprise administrator decides to force a re-enrollment of all automatically enrolled certificates it is necessary that the major number of the certificate template is greater than the major number in the automatically enrolled certificates. In case of a re-created certificate template, the major number of the certificate template may still be lower than the major number in the certificate. To work around this issue, the Enterprise Administrator has to repeat the enforced autoenrollment for a recreated certificate as many times until the major number in the certificate template is greater than the major number in the previously automatically enrolled certificates.
[bookmark: _Toc238287017]ADCS AD containers are missing
If for some reason there are no containers under Public Key Services container in AD, you can recreate those containers by running:
certutil.exe -InstallDefaultTemplates
Note: This will also create default templates under Certificate Templates container.
[bookmark: _Toc238287018]Unreachable CA
When you export a CA certificate from a remote Windows 2003 CA, you receive this error from certutil.exe:
CertUtil: -ping command FAILED: 0x800706ba (WIN32: 1722)
CertUtil: The RPC server is unavailable.
or
CertUtil: -ping command FAILED: 0x80070005 (WIN32: 5)
CertUtil: Access is denied.
Make sure that a user that is executing the -ca.cert command is a part of the CERTSVC_DCOM_ACCESS group on the CA.
[bookmark: _Toc238287019]Synchronization Issues
Various issues can be caused by problems with copying ADCS objects across different forests. For example, clients in the account forest may not see the template that should be available to them or CA may reject client’s request indicating that a version of the template is less than what CA is currently using. To diagnose these types of issues, administrator needs to make sure that ADCS objects in Active Directory exist in both forests and have the same attribute values.
To output current contents of the stores in AD into a text file, use certutil.exe -store command with LDAP paths provided in sections Publishing Root Certificate into Account Forest, Publishing Issuing CA Certificate to the NTAuth Certificate Store, and Publishing Issuing CA Certificates into Account Forest.
To list all of the ADCS objects in AD, use the ‘-whatif’ switch of the PKISync.ps1 script. For example, you can tell which object don’t exist in account forest by simulating copy of all of the object types and seeing which object don’t produce the warning that ‘-f’ switch should be used to overwrite them.
To output current attribute values of an ADCS object in AD into a text file, use dumpadobj.ps1 script provided in this white paper.
[bookmark: _Copy_Script:_PKISync.ps1][bookmark: _Toc238287020]Script - PKISync.ps1
Disclaimer: This script is not supported under any Microsoft standard support program or service. The sample script is provided AS IS without warranty of any kind. Microsoft further disclaims all implied warranties including, without limitation, any implied warranties of merchantability or of fitness for a particular purpose. The entire risk arising out of the use or performance of the sample script and documentation remains with you. In no event shall Microsoft, its authors, or anyone else involved in the creation, production, or delivery of the script be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to use the sample script or documentation, even if Microsoft has been advised of the possibility of such damages.
To use the script, copy all of the text below into the file PKISync.ps1 and execute it in Windows PowerShell. This script must be executed targeting a DC in the root domains of a resource and account AD forests. Targeting a DC in a child domain, explicitly or by omitting -targetdc or -sourcedc options, may result in an undefined and therefore unsupported behavior.
#
This script allows updating PKI objects in Active Directory for the
cross-forest certificate enrollment
#

#
Command line variables

$SourceForestName = ""
$TargetForestName = ""
$SourceDC = ""
$TargetDC = ""

$ObjectType = "all"
$ObjectCN = $null

$DryRun = $FALSE
$DeleteOnly = $FALSE
$OverWrite = $FALSE

function ParseCommandLine()
{
 if (2 -gt $Script:args.Count)
 {
 write-warning "Not enough arguments"
 Usage
 exit 87
 }

 for($i = 0; $i -lt $Script:args.Count; $i++)
 {
 switch($Script:args[$i].ToLower())
 {
 -sourceforest
 {
 $i++
 $Script:SourceForestName = $Script:args[$i]
 }
 -targetforest
 {
 $i++
 $Script:TargetForestName = $Script:args[$i]
 }
 -cn
 {
 $i++
 $Script:ObjectCN = $Script:args[$i]
 }
 -type
 {
 $i++
 $Script:ObjectType = $Script:args[$i].ToLower()
 }
 -f
 {
 $Script:OverWrite = $TRUE
 }
 -whatif
 {
 $Script:DryRun = $TRUE
 }
 -deleteOnly
 {
 $Script:DeleteOnly = $TRUE
 }
 -targetdc
 {
 $i++
 $Script:TargetDC = $Script:args[$i]
 }
 -sourcedc
 {
 $i++
 $Script:SourceDC = $Script:args[$i]
 }
 default
 {
 write-warning ("Unknown parameter: " + $Script:args[$i])
 Usage
 exit 87
 }
 }
 }
}

function Usage()
{
 write-host ""
 write-host "Script to copy or delete PKI objects (default is copy)"
 write-host ""
 write-host " Copy Command:"
 write-host ""
 write-host " .\PKISync.ps1 -sourceforest <SourceForestDNS> -targetforest <TargetForestDNS> [-sourceDC <SourceDCDNS>] [-targetDC <TargetDCDNS>] [-type <CA|Template|OID> [-cn <ObjectCN>]] [-f] [-whatif]"
 write-host ""
 write-host " Delete Command:"
 write-host ""
 write-host " .\PKISync.ps1 -targetforest <TargetForestDNS> [-targetDC <TargetDCDNS>] [-type <CA|Template|OID> [-cn <ObjectCN>]] [-deleteOnly] [-whatif]"
 write-host ""
 write-host "-sourceforest -- DNS of the forest to process object from"
 write-host "-targetforest -- DNS of the forest to process object to"
 write-host "-sourcedc -- DNS of the DC in the source forest to process object from"
 write-host "-targetdc -- DNS of the DC in the target forest to process object to"
 write-host "-type -- Type of object to process, if omitted then all object types are processed"
 write-host " CA -- Process CA object(s)"
 write-host " Template -- Process Template object(s)"
 write-host " OID -- Process OID object(s)"
 write-host '-cn -- Common name of the object to process, do not include the cn= (ie "User" and not "CN=User"'
 write-host " This option is only valid if -type <> is also specified"
 write-host "-f -- Force overwrite of existing objects when copying. Ignored when deleting."
 write-host "-whatif -- Display what object(s) will be processed without processing"
 write-host "-deleteOnly -- Will delete object in the target forest if it exists"
 write-host ""
 write-host ""
}

#
Build a list of attributes to copy for some object type
#
function GetSchemaSystemMayContain($ForestContext, $ObjectType)
{
 #
 # first get all attributes that are part of systemMayContain list
 #
 $SchemaDE = [System.DirectoryServices.ActiveDirectory.ActiveDirectorySchemaClass]::FindByName($ForestContext, $ObjectType).GetDirectoryEntry()
 $SystemMayContain = $SchemaDE.systemMayContain

 #
 # if schema was upgraded with adprep.exe, we need to check mayContain list as well
 #
 if($null -ne $SchemaDE.mayContain)
 {
 $MayContain = $SchemaDE.mayContain
 foreach($attr in $MayContain)
 {
 $SystemMayContain.Add($attr)
 }
 }

 #
 # special case some of the inherited attributes
 #
 if (-1 -eq $SystemMayContain.IndexOf("displayName"))
 {
 $SystemMayContain.Add("displayName")
 }
 if (-1 -eq $SystemMayContain.IndexOf("flags"))
 {
 $SystemMayContain.Add("flags")
 }
 if ($objectType.ToLower().Contains("template") -and -1 -eq $SystemMayContain.IndexOf("revision"))
 {
 $SystemMayContain.Add("revision")
 }

 return $SystemMayContain
}

#
Copy or delete all objects of some type
#
function ProcessAllObjects($SourcePKIServicesDE, $TargetPKIServicesDE, $RelativeDN)
{
 $SourceObjectsDE = $SourcePKIServicesDE.psbase.get_Children().find($RelativeDN)
 $ObjectCN = $null

 foreach($ChildNode in $SourceObjectsDE.psbase.get_Children())
 {
 # if some object failed, we will try to continue with the rest
 trap
 {
 # CN maybe null here, but its ok. Doing best effort.
 write-warning ("Error while coping an object. CN=" + $ObjectCN)
 write-warning $_
 write-warning $_.InvocationInfo.PositionMessage
 continue
 }

 $ObjectCN = $ChildNode.psbase.Properties["cn"]
 ProcessObject $SourcePKIServicesDE $TargetPKIServicesDE $RelativeDN $ObjectCN
 $ObjectCN = $null
 }

}

#
Copy or delete an object
#
function ProcessObject($SourcePKIServicesDE, $TargetPKIServicesDE, $RelativeDN, $ObjectCN)
{
 $SourceObjectContainerDE = $SourcePKIServicesDE.psbase.get_Children().find($RelativeDN)
 $TargetObjectContainerDE = $TargetPKIServicesDE.psbase.get_Children().find($RelativeDN)

 #
 # when copying make sure there is an object to copy
 #
 if($FALSE -eq $Script:DeleteOnly)
 {
 $DSSearcher = [System.DirectoryServices.DirectorySearcher]$SourceObjectContainerDE
 $DSSearcher.Filter = "(cn=" +$ObjectCN+")"
 $SearchResult = $DSSearcher.FindAll()
 if (0 -eq $SearchResult.Count)
 {
 write-host ("Source object does not exist: CN=" + $ObjectCN + "," + $RelativeDN)
 return
 }
 $SourceObjectDE = $SourceObjectContainerDE.psbase.get_Children().find("CN=" + $ObjectCN)
 }

 #
 # Check to see if the target object exists, if it does delete if overwrite is enabled.
 # Also delete is this a deletion only operation.
 #
 $DSSearcher = [System.DirectoryServices.DirectorySearcher]$TargetObjectContainerDE
 $DSSearcher.Filter = "(cn=" +$ObjectCN+")"
 $SearchResult = $DSSearcher.FindAll()
 if ($SearchResult.Count -gt 0)
 {
 $TargetObjectDE = $TargetObjectContainerDE.psbase.get_Children().find("CN=" + $ObjectCN)

 if($Script:DeleteOnly)
 {
 write-host ("Deleting: " + $TargetObjectDE.DistinguishedName)
 if($FALSE -eq $DryRun)
 {
 $TargetObjectContainerDE.psbase.get_Children().Remove($TargetObjectDE)
 }
 return
 }
 elseif ($Script:OverWrite)
 {
 write-host ("OverWriting: " + $TargetObjectDE.DistinguishedName)
 if($FALSE -eq $DryRun)
 {
 $TargetObjectContainerDE.psbase.get_Children().Remove($TargetObjectDE)
 }
 }
 else
 {
 write-warning ("Object exists, use -f overwrite. Object: " + $TargetObjectDE.DistinguishedName)
 return
 }
 }
 else
 {
 if($Script:DeleteOnly)
 {
 write-warning ("Can't delete object. Object doesn't exist. Object: " + $ObjectCN + ", " + $TargetObjectContainerDE.DistinguishedName)
 return
 }
 else
 {
 write-host ("Copying Object: " + $SourceObjectDE.DistinguishedName)
 }
 }

 #
 # Only update the object if this is not a dry run
 #
 if($FALSE -eq $DryRun -and $FALSE -eq $Script:DeleteOnly)
 {
 #Create new AD object
 $NewDE = $TargetObjectContainerDE.psbase.get_Children().Add("CN=" + $ObjectCN, $SourceObjectDE.psbase.SchemaClassName)

 #Obtain systemMayContain for the object type from the AD schema
 $ObjectMayContain = GetSchemaSystemMayContain $SourceForestContext $SourceObjectDE.psbase.SchemaClassName
 #Copy attributes defined in the systemMayContain for the object type
 foreach($Attribute in $ObjectMayContain)
 {
 $AttributeValue = $SourceObjectDE.psbase.Properties[$Attribute].Value
 if ($null -ne $AttributeValue)
 {
 $NewDE.psbase.Properties[$Attribute].Value = $AttributeValue
 $NewDE.psbase.CommitChanges()
 }
 }
 #Copy secuirty descriptor to new object. Only DACL is copied.
 $BinarySecurityDescriptor = $SourceObjectDE.psbase.ObjectSecurity.GetSecurityDescriptorBinaryForm()
 $NewDE.psbase.ObjectSecurity.SetSecurityDescriptorBinaryForm($BinarySecurityDescriptor, [System.Security.AccessControl.AccessControlSections]::Access)
 $NewDE.psbase.CommitChanges()
 }
}

Get parent container for all PKI objects in the AD
#
function GetPKIServicesContainer([System.DirectoryServices.ActiveDirectory.DirectoryContext] $ForestContext, $dcName)
{
 $ForObj = [System.DirectoryServices.ActiveDirectory.Forest]::GetForest($ForestContext)
 $DE = $ForObj.RootDomain.GetDirectoryEntry()

 if("" -ne $dcName)
 {
 $newPath = [System.Text.RegularExpressions.Regex]::Replace($DE.psbase.Path, "LDAP://\S*/", "LDAP://" + $dcName + "/")
 $DE = New-Object System.DirectoryServices.DirectoryEntry $newPath
 }

 $PKIServicesContainer = $DE.psbase.get_Children().find("CN=Public Key Services,CN=Services,CN=Configuration")
 return $PKIServicesContainer
}

###
Main script code
###

#
All errors are fatal by default unless there is another 'trap' with 'continue'
#
trap
{
 write-error "The script has encoutnered a fatal error. Terminating script."
 break
}

ParseCommandLine

#
Get a hold of the containers in each forest
#
write-host ("Target Forest: " + $TargetForestName.ToUpper())
$TargetForestContext = New-Object System.DirectoryServices.ActiveDirectory.DirectoryContext Forest, $TargetForestName
$TargetPKIServicesDE = GetPKIServicesContainer $TargetForestContext $Script:TargetDC

Only need source forest when copying
if($FALSE -eq $Script:DeleteOnly)
{
 write-host ("Source Forest: " + $SourceForestName.ToUpper())
 $SourceForestContext = New-Object System.DirectoryServices.ActiveDirectory.DirectoryContext Forest, $SourceForestName
 $SourcePKIServicesDE = GetPKIServicesContainer $SourceForestContext $Script:SourceDC
}
else
{
 $SourcePKIServicesDE = $TargetPKIServicesDE
}

if("" -ne $ObjectType) {write-host ("Object Category to process: " + $ObjectType.ToUpper())}

#
Process the command
#
switch($ObjectType.ToLower())
{
 all
 {
 write-host ("Enrollment Serverices Container")
	 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=Enrollment Services"
 write-host ("Certificate Templates Container")
 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=Certificate Templates"
 write-host ("OID Container")
 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=OID"
 }
 ca
 {
 if($null -eq $ObjectCN)
 {
 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=Enrollment Services"
 }
 else
 {
 ProcessObject $SourcePKIServicesDE $TargetPKIServicesDE "CN=Enrollment Services" $ObjectCN
 }
 }
 oid
 {
 if($null -eq $ObjectCN)
 {
 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=OID"
 }
 else
 {
 ProcessObject $SourcePKIServicesDE $TargetPKIServicesDE "CN=OID" $ObjectCN
 }
 }
 template
 {
 if($null -eq $ObjectCN)
 {
 ProcessAllObjects $SourcePKIServicesDE $TargetPKIServicesDE "CN=Certificate Templates"
 }
 else
 {
 ProcessObject $SourcePKIServicesDE $TargetPKIServicesDE "CN=Certificate Templates" $ObjectCN
 }
 }
 default
 {
 write-warning ("Unknown object type: " + $ObjectType.ToLower())
 Usage
 exit 87
 }
}
[bookmark: _Toc238287021]Script - dumpadobj.ps1
Disclaimer: This script is not supported under any Microsoft standard support program or service. The sample script is provided AS IS without warranty of any kind. Microsoft further disclaims all implied warranties including, without limitation, any implied warranties of merchantability or of fitness for a particular purpose. The entire risk arising out of the use or performance of the sample script and documentation remains with you. In no event shall Microsoft, its authors, or anyone else involved in the creation, production, or delivery of the script be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to use the sample script or documentation, even if Microsoft has been advised of the possibility of such damages.
This script uses ldifde.exe to output current attribute values of a PKI object in Active Directory. Use this script to compare same objects located in different forests. Note that this script must be executed on the computer that has ldifde.exe tool available. The ldifde.exe is a tool that ships in Windows, but may require Admin Pack or Remote Management tools to be installed on some versions.
#
This script dumps certificate template/CA information using ldifde.exe
#

#
Command line arguments
#
$ForestName = ""
$DCName = ""
$ObjectType = ""
$ObjectName = ""
$OutFile = ""

function ParseCommandLine()
{
 if (10 -gt $Script:args.Count)
 {
 write-warning "Not enough arguments"
 Usage
 exit 87
 }

 for($i = 0; $i -lt $Script:args.Count; $i++)
 {
 switch($Script:args[$i].ToLower())
 {
 -forest
 {
 $i++
 $Script:ForestName = $Script:args[$i]
 }
 -dc
 {
 $i++
 $Script:DCName = $Script:args[$i]
 }
 -type
 {
 $i++
 $Script:ObjectType = $Script:args[$i]
 }
 -cn
 {
 $i++
 $Script:ObjectName = $Script:args[$i]
 }
 -file
 {
 $i++
 $Script:OutFile = $Script:args[$i]
 }
 default
 {
 write-warning ("Unknown parameter: " + $Script:args[$i])
 Usage
 exit 87
 }
 }
 }
}

function Usage()
{
 write-host ""
 write-host "Script to attributes value of certificate template or CA object in AD"
 write-host ""
 write-host "dumpadobj.ps1 -forest <DNS name> -dc <DC name> -type <template|CA> -cn <Name> -file <output file>"
 write-host ""
 write-host "-forest -- DNS of the forest to process object from"
 write-host "-dc -- DNS or NetBios name of the DC to target"
 write-host "-type -- Template or CA"
 write-host "-cn -- Template or CA name"
 write-host "-file -- Output file"
 write-host ""
}

###
Main script code
###

#
All errors are fatal by default unless there is anoter 'trap' with 'continue'
#
trap
{
 write-error "The script has encountered a fatal error. Terminating script."
 break
}

ParseCommandLine

write-host ""
write-host "Effective settings:"
write-host ""
write-host " Forest: $ForestName"
write-host " DC: $DCName"
write-host " Type: $ObjectType"
write-host " Name: $ObjectName"
write-host " File: $OutFile"
write-host ""

#
Set type specific variables
#
switch($ObjectType.ToLower())
{
 "template"
 {
 $ObjectContainerCN = ",CN=Certificate Templates"
 $ObjectSchema = "pKICertificateTemplate"
 }
 "ca"
 {
 $ObjectContainerCN = ",CN=Enrollment Services"
 $ObjectSchema = "pKIEnrollmentService"
 }
 default
 {
 write-warning ("Unknown object type: " + $ObjectType)
 Usage
 exit 87
 }
}

#
Build full DN for the object
#
$ForestDN = "DC=" + $ForestName.Replace(".", ",DC=")
$ObjectFullDN = "CN=" + $ObjectName + $ObjectContainerCN + ",CN=Public Key Services,CN=Services,CN=Configuration," + $ForestDN

#
Build list of attributes to display
#
$ForestContext = New-Object System.DirectoryServices.ActiveDirectory.DirectoryContext Forest, $ForestName
$SchemaDE = [System.DirectoryServices.ActiveDirectory.ActiveDirectorySchemaClass]::FindByName($ForestContext, $ObjectSchema).GetDirectoryEntry()
$AttrList = $SchemaDE.systemMayContain

if($null -ne $SchemaDE.mayContain)
{
 $MayContain = $SchemaDE.mayContain
 foreach($attr in $MayContain)
 {
 [void]$AttrList.Add($attr)
 }
}

if (-1 -eq $AttrList.IndexOf("displayName"))
{
 [void]$AttrList.Add("displayName")
}

if (-1 -eq $AttrList.IndexOf("flags"))
{
 [void]$AttrList.Add("flags")
}

if ($ObjectType.ToLower().Equals("template") -and -1 -eq $AttrList.IndexOf("revision"))
{
 [void]$AttrList.Add("revision")
}

$SB = New-Object System.Text.StringBuilder
for($i = 0; $i -lt $AttrList.Count; $i++)
{
 [void]$SB.Append($AttrList[$i])
 if($i -lt ($AttrList.Count - 1))
 {
 [void]$SB.Append(",")
 }
}
$AttrListString = $SB.ToString()

#
Build command line and execute
#
$CommandLine = "-d """ + $ObjectFullDN + """ -p Base -l """ + $AttrListString + """ -f """ + $OutFile + """ -s " + $DCName
Invoke-Expression "ldifde.exe $CommandLine" > ldifde.out.txt
type "$OutFile"

43

image1.jpeg
A.u. Windows Server2008r2

image2.emf
Active Directory Forest A

Windows

Client Computer

User

Active Directory Forest B

Windows

Client Computer

User

Active Directory Forest C

Windows

Client Computer

User

Two-way forest trust

Two-way forest trust

oleObject1.bin
�

�

�

User

Two-way forest trust

Active Directory Forest A

image3.wmf
Active Directory Forest A

Windows

Client Computer

User

Enterprise CA

Active Directory Forest B

Windows

Client Computer

User

Active Directory Forest C

Windows

Client Computer

User

Root CA

Forest trust

Forest trust

image4.wmf
Active Directory Forest A

Windows

Client Computer

User

Enterprise CA

Active Directory Forest B

Windows

Client Computer

User

Enterprise CA

Active Directory Forest C

Windows

Client Computer

User

Enterprise CA

Root CA

oleObject4.bin
�

�

�

User

Forest trust

Active Directory Forest A

